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Space group Clebsch-Gordan coefficients: I. Special solutions 
of the multiplicity problem and Dirl’s criterion 
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Received 24 September 1984, in final form 3 July 1985 

Abstract. The wavevector selection rules (WSR) occurring in the reduction of Kronecker 
products of space group unirreps are classified, for convenience, into three types. For 
WVSR of type I, Dirl has shown that special solutions of the multiplicity problem always 
exist. For WVSR of type 11, Dirl has given a simple criterion for the existence of special 
solutions of the multiplicity problem and in this paper it is shown that, for all 230 (single 
and double) space groups, the Miller and Love matrix unirreps satisfy this criterion. WVSR 

of type 111 will be considered in a subsequent paper. 

1. Introduction 

The construction of selection rules governing many important quantum mechanical 
interactions in crystals (e.g. infrared absorption, Raman scattering, electron scattering, 
etc) is facilitated by the knowledge of the multiplicities (also called Clebsch-Gordan 
( C G )  series coefficients or reduction coefficients) in the reduction of the Kronecker 
products or symmetrised Kronecker powers of unitary irreducible representations 
(unirreps) of crystallographic space groups (Winston and Halford 1949, Elliott and 
Loudon 1960, Lax and Hopfield 1961, Bradley and Cracknell 1972, Birman 1974a, 
Dirl 1979b, Cornwell 1984). Space group unirreps have a convenient realisation as 
induced representations from small (or allowed) unirreps of a little group (or group 
of the q vector). The mathematical problem of the reduction of the Kronecker products 
of these induced representations of space groups within the framework of little group 
theory was solved by Bradley (1966) using a theorem of Mackey (1951, 1952). The 
related problem of reducing the symmetrised and antisymmetrised Kronecker squares 
was solved by Bradley and Davies (1970). Later this work was extended by Gard 
(1973a, b) to solve the general problem of the reduction of symmetrised Kronecker 
powers entirely within the little group framework. On the other hand, several authors 
have tackled these problems without using the full power of little group theory (Birman 
1962, Streitwolf 1969, Doni and Pastori Parravicini 1973, Lewis 1973, Dirl 1979b). 

The present author, in collaboration with A P Cracknell, developed computer 
programs, using little group methods, for the systematic calculation of multiplicities 
in the reduction of Kronecker products and symmetrised Kronecker powers of unirreps 
of all 230 (single and double) space groups (Cracknell et a1 1979) (hereafter referred 
to as CDML), Cracknell and Davies 1979, Davies and Cracknell 1979, 1980a, b). The 
Miller and Love (1967) (hereafter referred to as ML) computer generated tables of 
space group unirreps, on magnetic tape, formed the bulk of the input data to our 
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832 B L Davies 

programs. The M L  tables were declared ‘out of print’ by Pruett Press and so these 
tables were reprinted (with some modifications) in CDML. 

Following the calculation of multiplicities, the next stage is the calculation of CG 

coefficients. Physical applications of these include two-photon absorption matrix 
elements, scattering tensors for multipole-dipole resonance Raman scattering, higher 
order moment expansions in infrared absorption, etc (Birman 1974a, b, Birman and 
Berenson 1974, Birman et a1 1976). Whereas the multiplicities are independent of the 
basis functions, the CG coefficients are, of course, basis dependent. However, the value 
of any physical observable, which can be expressed in terms of the CG coefficients, is 
invariant under a change of basis (Birman et al 1976). In the past few years much 
attention has been devoted to the theoretical problem of calculating CG coefficients 
(Litvin and Zak 1968, Card 1973c, Birman 1974a, Sakata 1974, Berenson and Birman 
1975, van den Broek and Cornwell 1978, Dirl 1979a, c, 1981, 1982, Chen e t  a1 1983) 
and some hand calculations have been done on a few space groups (Berenson et a1 
1975, Suffczynski and Kunert 1978, Dirl 1979d, Kunert and Suffczynski 1980, Kunert 
1983). 

Dirl (1979a, c, 1981, 1982) exploits the fact that the columns of the CG matrix may 
be seen as symmetry adapted vectors which may then be constructed by projection 
operator techniques. This elegant method correctly deals with the ‘multiplicity problem’ 
which arises from the fact that space groups are not simply reducible. A remarkable 
feature of this method is the possibility of identifying the multiplicity index with special 
column indices of the Kronecker product. When this can be done, a ‘special solution 
of the multiplicity problem’ has been found and then all the elements of the correspond- 
ing columns of the CG matrix can be computed using a single explicit formula. An 
interesting example of this in the non-symmorphic body-centred cubic space group 
Ia3d has been briefly reported (Davies and Dirl 1984). 

In this paper (which is the first in a series of three) we classify, for convenience, 
the wavevector selection rules (WVSR) occurring in the reduction of Kronecker products 
of space group unirreps, into one of three types. For WVSR of type I ,  Dirl ( 1 9 7 9 ~ )  has 
shown that special solutions of the multiplicity problem always exist. For WVSR of 
type 11, Dirl ( 1 9 7 9 ~ )  has given a simple criterion for the existence of special solutions 
of the multiplicity problem and here we show that, for all 230 (single and double) 
space groups, the M L  matrix unirreps satisfy this criterion. The WVSR of type 111 will 
be considered in paper I1 of this series. 

2. Clebsch-Gordan coefficients 

In this section we establish the notation (which follows mainly that of Dirl (1977, 
1979a, b, c)) for use in this paper and in the next two papers in the series. 

of a space group G (which contains an invariant subgroup 
of translations T) can be induced from an allowed matrix unirrep r(K3q1 of the little 
group (or group of the q vector) G‘, 

A matrix unirrep 

TG (1) A ( K . 4 )  = r ( K . 4 )  

where q is a vector in the fundamental domain (or representation domain) ABZ of the 
first Brillouin zone of G and K labels the different allowed matrix unirreps of Gq 
(Bradley and Cracknell 1972, Altmann 1977, Dirl 1979b). (Representation domains 
for all 230 space groups are given in CDML.)  
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At this point it is important to note that, in contrast to the convention adopted by 
Bradley and  Cracknell (1972) and Dirl (1977), we follow the convention of ML and  
CDML whereby the one-dimensional unirreps Dq of the translation group T are given 

D'[ ( e  I t ) ]  = exp( +iq t )  (2) 
by 

for all q E ABZ and t E T, where the positive sign, and  not the negative sign, occurs in 
the exponential term on the right-hand side of (2). As a consequence of (2), we have 

r(K,q)[(a I ~ ( a ) +  t ) ]  = exp(+iq* t ) r (K-q ) [ (a  I T ( ( Y ) ) ]  (3) 
where ( a  I T( a ) )  E G' and ?E T, which is the characteristic property of the allowed 
unirreps of G'. 

An allowed matrix unirrep r (K*q)  can be constructed from a projective matrix unirrep 
R" of the little co-group P' (=Gq/T) ,  belonging to a certain factor system, by 

r (K+)[ (a  / ~ ( a ) ]  =exp(+ iq -  7 ( a ) ) R K ( a )  (4) 

where ( a  ~ T ( L Y ) )  E G', a E P' and the same sign convention is used in (4) as in ( 2 )  and 
(3) (Bradley and Cracknell 1972, Altmann 1977, Dirl 1979b). 

The dimension of A'Ks4) is IqnK, where lq (=IG:G41 =IP:P41, P=G/T)  is the index 
of Gq in G and n ,  is the dimension of I?' (=dimension of R " ) .  The matrix elements 
of 

A ' " ~ " [ ( P  1 d P )  + t ) I  

where ( p  1 ~ ( p ) )  E G and t~ T are given by 

A(=d:%)C[(P 1 r ( P ) +  t)] = r%'!(?I T ( ? ) ) - ' ( P  1 d P ) +  t)(6l T(@)) ]A~(Y,  P @ )  ( 5 )  

where ?, 6 E P: P4, A'( y, y ' )  = Sypq,y pq for all y, Y'E P. 
At this point it is convenient to emphasise a very important rule which must be 

adhered to throughout the calculation of CG coefficients for Kronecker products of 
space group unirreps. This rule is that the left coset representatives of P" in Pare  chosen 
at the outset and from then on must remain Jixed. In Dirl (1979a, c) these left coset 
representatives are always underbarred, but here, for printing reasons, they are always 
overbarred. 

The multiplicities m,, . , , , ,  ,' ),iKo,qo, in the reduction of the Kronecker product A"sq)@ 
A ' " 3 4 )  of two unirreps A(Ksq),  A(K*" of G into a direct sum of component unirreps 

are defined by 

where - denotes equivalence. For given vectors q, q' E ABZ, the possible vectors go E ABZ 
in the right-hand side of ( 6 ) ,  for which non-zero multiplicities occur, are determined 
by wavevector selection rules (WVSR): 

q ( @ ) +  q ' ( 6 ' )  = go+ Q [ q ( 6 )  + q ' ( 6 ' ) l  ( 7 )  
where Q[q(6) + q ' ( 6 ' ) ]  is a translation vector of the reciprocal lattice, and 6, 5' are 
certain special left coset representatives of P', P" respectively, with respect to P, 
( @ E  P: P4, +'E P: Pq'). The restrictions on Cr, e' are so severe that frequently, but by 
no  means always, for given q E ABZ, only one WVSR (7) exists. In this connection, see 
S 6.1 of CDML.  (The term leading wavevector selection rule (LWVSR) is sometimes used 
to describe (7) (Lewis 1973, Dirl 1981, 1982). Although this is a more descriptive term, 
we shall not use it here in order to remain consistent with the terminology used in CDML.) 
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Equivalent versions of the formula for multiplicity in (6) have been given by Bradley 
(1966), Lewis (1973) and Dirl (1979b). The WSR and multiplicities for all Kronecker 
products involving non-trivial little co-groups P, Pq' have been computer generated 
for all 230 (single and double) space groups (Davies and Cracknell 1979, Cracknell 
and Davies 1979). 

In the calculation of CG coefficients it is crucial to distinguish between different 
WVSR (7) having identical vectors ~ , € A B Z ,  and to emphasise this point, we extend 
slightly the notation of Dirl (1979b). For given q, q';  qo, each WVSR (7) may be labelled 
by a pair of left coset representatives (6,6') and the set of such pairs is denoted by 
P(q, q';  go). We denote by m ~ ~ ~ ) ' ~ K , , q , ) ; ( K o . q o ) ,  which we call a 'component multiplicity', 
the contribution to the multiplicity m(K,q)(K' ,q , ) ; (Ko,qo)  from the WVSR labelled by (6, 6'). 
Equation 111.83 of Dirl (1979b) then reads 

where 

x x"(6-'x6)x"'(6'-'x6')xK:(x). (9) 

Equations (7), (8) and (9) are equivalent to equations (6.33), (6.31) and (6.32), 
respectively, of CDML. 

The unitary CG matrix C(K9q)(K'vq')  is defined by 
( C ( K . q ) ( K ' , C r ' f ) + ( A ( K ' 4 ) [ g ]  @ A ( K ' s q ' )  [g]) C ( & q ) ( K ' A ' )  

for all g E G ,  where + denotes the adjoint. The dimension of C(K*q)(K'sq')  is ( lqnK) x ( lq,nKr) 
and the CG coefficients are the elements of this matrix: 

(11) K q ) ( K ' A ' )  c kW;( K n , ( @ * . b ' ) q o )  wen j 

where the rows are indexed lexicographically by ?d, f 'd '  such that .T E P: Pq, d = 1, 
2,.  . . , n,, ?'E P:Pq', d ' =  1, 2,. . . , nK,; and the columns are indexed by 
( K ~ ,  (6, 6 ' )qo )w60 j  for those ( K ~ ,  (6, 6 ' )qo)  such that in (10) 

> O  = ', 2, * ' ' 9 m[~;$[K',q');(Ko,qo) 
(a,&') 

" ( r r , q ) ( * ' , 4 ' ) ; ( * 0 , r D )  

CO€ P: Pa, j = 1,2, .  . . , n,. The index w is called a 'component multiplicity index', 
and in the following, when we refer to 'multiplicity index', we mean 'component 
multiplicity index'. 

The main difficulty in calculating CG coefficients for space groups arises from 
component multiplicities greater than unity and not necessarily from multiplicities 
greater than unity since the latter, from (8), can arise from a sum of unit component 
multiplicities. The first example of this was found by Bradley (1966) and other examples 
may be found in Davies and Cracknell (1979) and Cracknell and Davies (1979) using 
table 6.1 in CDML. 

The CG matrix (11) is built up column by column and an important part of this 
procedure is to identify the different values of the multiplicity index w with different 
special column indices of the Kronecker product A(K'sq')  . In other words, for 
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given m(a.a') 
, ,q) ( , r ,q ' ) ; ( ,o,qo)  > 0, the task is to find special column indices (e,,, c,; e:, c ; ) ,  so 

that 

(12) (8.8') 
w = (em c,; e;, c;)  v = 1,2, * . * 9 m(,,q)(,,,q,);(,,,q,). 

When this can be done, then a 'special solution of the (component) multiplicity problem' 
has been found and then all the elements of the CG matrix in the columns labelled by 
( K , ,  (6, 6 ' )q , )  can be computed using a single explicit formula in terms of only the 
allowed matrix unirreps r(K*q), r(x'*q'), r(Ko7q) (Dirl 1979~).  In the next section we discuss 
the circumstances in which such special solutions can be found. 

3. Special solutions of the multiplicity problem and Dirl's criterion 

For convenience, we classify the WVSR (7) that can occur in the reduction of a given 
Kronecker product A(c*q)@A("*q') into one of the following three types. The triple 
intersection group P$,$iqo is defined by 

ppq:iqo U, = (epqc-') n (ey'ef-') n p& (13) 

and {e} denotes the trivial group. 
Type I 

Pq = {e}. (14) 

Pa # {e} and p:,%$qo = {e}. (15) 

Type II 

Type III 

p$,$:q(l# {e}. (16) 
Type I WVSR correspond to cases A.l, B.l, C.l of Dirl (1979~). Type I1 WVSR 

correspond to cases A.2, B.2, C.2a of Dirl (1979~).  Type I11 WVSR correspond to case 
C.2 of Dirl (1979c), but excluding subcase C.2a. 

Dirl (1979~) has shown that special solutions of the multiplicity problem always 
exist for WVSR of type I. 

The existence of special solutions for type I1 WVSR depends on the projective matrix 
unirreps R"o of Pq. If R"0 is such that n,, group elements x ,  E Pq, i = 1, 2 , .  . . , n,,, can 
be found such that, for some fixed integer a, in the range 1 s aob nro, 

RZiq(xlxj-')  = 8, (17) 
for all i, j = 1, 2, .  . . , n,,, then Dirl (19794 has shown that a special solution of the 
multiplicity problem exists. We refer to (17) as 'Dirl's criterion'. 

Special solutions of the multiplcity problem for WVSR of type I11 will be considered 
in paper I1 of this series. 

Returning to type I1 WVSR, it is convenient to express (17) in terms of the allowed 
matrix unirrep r(Ko.%) rather than the projective matrix unirrep R"o. Using (4), it is 
straightforward to show that 

~ & , ( x , x ; ' )  = exp[iqo * (5  + 7 ( x , x ; ' ) ) 1  
= 0  

x c r~"'", I ~ ( x l ) ) l ~ ~ 8 ' q ~ ) r ( x ,  I T ( X , ) ) l  
b = l  
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where 

and til E T. 
Now 

T ( e )  = O  (20) 

t,, = 0. (21) 

and so (20) in (19) implies 

Using (18)-(21) in (17), Dirl's criterion can now be expressed in terms of the allowed 
matrix unirrep r i K o s q l  as follows. 

If r i " o * 4 0 )  is such that nKo group elements (xt \7(x, ) )  E G", i = 1, 2 , .  . . , n,,, can be 
found such that, for some fixed integer a, in the range 1 c a,< nKo. 

for all i, j = 1, 2, . . . , n,{, then a special solution of the multiplicity problem exists. 
The left-hand side of (22) is in the form of a scalar product of the a,th row vector 

of the matrix representing (x, 1 T(x,)), wlth the a,th row vector of the matrix representing 
(xJl~(x, ) ) .  Thus (22) requires that these vectors be orthonormal. We now see that 
Dirl's criterion is satisfied if, from amongst the allowed matrices r C K o 3 Q ' ,  H ~ , ,  matrices 
can be found such that for fixed integer a, in the range 1 s a , c  nuor the a,th rows are 
pairwise orthogonal. (The unitarity of the matrices r ( '0740 '  guarantees that the rows 
are of unit norm.) If, further, the nKo unitary matrices r(KiI'qo'[(x, 1 ~ ( x ~ ) ) ] ,  i = 1, 
2 , .  . . , nKo, satisfying (221, for some integer a,, are also monomial matrices (i.e. with 
exactly one non-zero element in each row and  column) then these matrices will satisfy 
(22) for all values of the integer a, in the range 1 S a,< nro. 

Up to this point we have only considered 'single' space groups. Dirl (1981) has 
shown that the results in Dirl (1979b, c) for 'single' space groups G generalise naturally 
to 'double' space groups G*. For double space groups, the trivial group in (14)-( 16) 
is replaced by the group Z* = { e ,  Z}, where e is the identity and  P is the rotation through 
27~. Equation (22) remains unchanged, where r(Kos&) now denotes an  allowed matrix 
unirrep of the double group GqG. With these minor changes, the classification of WVSR 

into three types and the corresponding statements concerning special solutions of the 
multiplicity problem, remain true for double space groups. 

4. Miller and Love standard matrices 

We show below that, for all 230 (single and double) space groups, the M L  allowed 
matrix unirreps r ( K o * q o ) ,  as extended by CDML, satisfy Dirl's criterion (22) for all q, E ARZ. 

Obviously, all r'Ko-Qo), for which nKo= 1, automatically satisfy (22), and  this includes 
the special case when Pq;=Z*,  i.e. when qo is a 'general point' for which the WVSR 

(7) is of type I.  All r (Ko.qn'  for all 'special points', i.e. for which P'S 1 Z*, are tabulated 
for all 230 (single and double) space groups in CDML. Thus, if all of these r ( K o * 4 0 )  

satisfy (22), then special solutions of the multiplicity problem will exist for all WVSR 

of type 11. 
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I n  CDML, for given (K,, q,), only 'augmenting matrices' r(Ko-%) [ (a1 ~ ( a ) ) ]  are 
tabulated, where { ( a  I T (  a ) ) }  is a special subset of GqE : T, and riK03%)[ ( a I 7( a )  + t ) ] ,  for 
any ( a  I T ( C Y )  + t )  E GqB, may be generated from the tabulated set of augmenting matrices 
by using (3) and matrix multiplication. 

Furthermore, for any given r ( K o * & ) ,  of dimension n,, (=  d ), any augmenting matrix 
is given by 

r(%%J[( a 1 7( a ) ) ]  = E y ~ s q O ) ~ ;  (23) 

and S t  is one of a small set of standard unitary matrices {Sf }  of dimension d. 
Given r ( K o s q o ) ,  suppose that U' is a (unitary) matrix generated from the set of 

augmenting standard matrices, then (3), (23) and (24) imply that there exists (x, 1 T ( x , ) )  E 

G4E such that 

r(Kov%J[(xr 1 T(X,))]  = w : K ~ ~ q ~ ) u i  (25) 

where 

I w y o . q o ) l  = 1 .  (26) 
Suppose further that nro monomial unitary matrices U ' ,  i = 1, 2, . . . , n,, can be found 
such that, for all a,= 1, 2 , .  . . , nKor 

n 
K O  

1 u h ' , b  U i o b  = 6 ,  (27) 
b = l  

for all i, J = 1 ,  2 , .  . . , n,,, then (25)-(27) imply that Dirl's criterion (22) is satisfied so 
that a special solution of the multiplicity problem exists for any value of the integer 
a,, 1 s a s n,,. 

An ALGOL computer program was written to examine the augmenting standard 
matrices tabulated for each I " * o * ~ )  for all 230 (single and double) space groups. The 
tabulations of CDML on magnetic tape formed the input data to the program. (Note: 
the complete set of standard matrices of ML, which are required for the tabulation of 
representations and co-representations, were reprinted in table 5.1 of CDML. Not all 
the standard matrices in table 5.1 of CDML are actually used in the tabulation of 
representations. For example, all the eight-dimensional matrices only occur for co- 
representations. Only one-, two-, three-, four- and six-dimensional standard matrices 
occur in the tabulation of representations.) 

The remarkable fact is that for every r(*09&) in all 230 (single and double) space 
groups, it is possible to generate from the augmenting standard matrices for F K o > Q ) ,  
nK0 monomial unitary matrices U' ,  i = 1 ,  2, .  . . , n,,, which satisfy (27) and therefore 
Dirl's criterion (22). This is demonstrated as follows. Apart from the trivial case 
n,,= 1, each set of augmenting standard matrices is such that one special matrix A 
(for n K o = 2 ,  3) or two special matrices A and B (for n, ,=4 ,  6) can be found from 
which the set { U ' } ,  i = 1 ,  2 , .  . . , n,,, can be generated to satisfy (27). Let Sp denote 
the ith standard matrix of dimension d in table 5.1 of CDML. Let E = Sf,  d = 1, 2, 3, 
4 ,  6, where E denotes the identity matrix. Consider the cases n,, = 1, 2 ,  3, 4,  6 in turn. 
n,, = 1 

U ' =  E. 
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nKo = 2 

U ' =  E U 2 = A  

where 

A = S f  i E {2 ,3 ,7 ,  12). 

General form: 

nro = 3 

U ' =  E u2 = A-' U 3 = A  

where 

A = $  i E {4,9}. 

General form: 

nKo = 4 

U ' = E  U 2 = A  U 3 =  B U4= AB 

where either 

A = $  iE{3 ,8 ,9 ,11 ,  12,24,27,46} 
or 

A = (S;*)(s;d 
and 

B = S? j~ {5,13,17,54,73}.  

General forms: 

\ o  0 s o t  

(32) 

(33) 

(34) 
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nKo = 6 

U ' =  E u2 = A-' U 3 = A  

U4= €3 us = A B A - I  u6 = AB 

where 

A = Syo 

and 

B = S;.  

(35) 

For each r('o*&) in all 230 (single and double) space groups, the program checked 
the existence of the special matrices A and B, given by (29), (31), (33), (34), (36) and 
(37) in the set of augmenting standard matrices. This was also double-checked by hand! 

5. Conclusion 

In this paper we report that, for all 230 (single and double) space groups, the Miller 
and Love (1967) (induced) matrix unirreps, as extended by Cracknell et a1 (1979), 
possess the remarkable property that they satisfy Dirl's criterion (22) and so provide 
special solutions of the multiplicity problem for all wavevector selection rules of type 
I1 occurring in any Kronecker product of space group unirreps. 
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